Knowledge-Based Agents

- A knowledge-based agent has a base of knowledge about the world
- It uses that base to make new inferences about the world
- From those inferences it decides what to do

Knowledge Base

- The knowledge base is a set of sentences in a particular formal language
- On receiving a percept, the knowledge-based agent operates as follows:
 - It TELLS its knowledge base about the percept
 - It ASKS the knowledge base what to do
 - It TELLS the knowledge base about its action
 - And then it performs the action

Knowledge-Based Agents

- A knowledge-based agent must be able to:
 - Represent states, actions, etc
 - Incorporate new percepts into its representation
 - Update its internal representation of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions
- Many of these abilities depend on being able to infer new sentences from old
KB Agent Architecture

- A knowledge-based agent has three implementation levels:
 - Knowledge level
 - Inference level
 - Implementation level

Wumpus World: PEAS Description

- Performance measure:
 - gold +1000
 - death -1000
 - -1 per step
 - -10 for shooting an arrow

- Environmental percepts:
 - Square adjacent to wumpus smell
 - Square adjacent to pit is breezy
 - Square glitters if gold is present
 - Shooting kills wumpus if facing it
 - Shooting uses the only arrow
 - Grabbing picks up gold if present
 - Releasing drops gold

- Sensors can detect:
 - Stench
 - Breeze
 - Glitter
 - Bump
 - Scream

- Actuators allow:
 - Left turn
 - Right turn
 - Forward
 - Grab
 - Release
 - Shoot

Wumpus World Properties

- Fully observable?
 - No: agent can only perceive current square

- Deterministic?
 - Yes: all possible outcomes exactly specified

- Episodic?
 - No: sequential actions

- Static?
 - Yes: wumpus and pits do not move

- Discrete?
 - Yes: split into individual squares

- Single agent?
 - Yes: wumpus is not an agent
Logical Agents

- A *logical agent* is a particular type of knowledge-based agent that uses *logic* to deduce new facts about the world and which actions to take.
- If a logical agent draws a conclusion from available information, that conclusion is guaranteed to be correct if the information it was drawn from is correct.

Logic

- A *logic* is a formal language for representing information as sequences of symbols
 - “*Sentences*”
- The *syntax* of a logic defines the valid sentences.
- The *semantics* of a logic define their meaning
 - In many cases, whether they are true or not

Example: Arithmetic

- Symbols: + - × = < ≤ ≥ [0-9] [a-z]
- Syntax:
 - Valid sentences:
 - 1 + 1 = 2
 - 2 × 2 = 5
 - x + 2 ≥ y
 - Invalid sentences:
 - 1 × 1 =
 - x + 2 ≥ 3
- Semantics:
 - True sentences:
 - 1 + 1 = 2
 - x + 2 ≥ y, if the number x+2 is no less than the number y
 - False sentences:
 - 2 × 2 = 5

Worlds and Models

- Semantics are defined with respect to a particular state of the world
 - E.g. x + 2 ≥ y is true in a world where x = 3 and y = 2
 - x + 2 ≥ y is false in a world where x = 2 and y = 5
- A *model* is a formal representation of the state of the world
 - X=3, y=2 is a model; x=2, y=5 is a different model
- “M is a model of α” means sentence α is true in model M
 - M(α) is the set of all possible models of α
 - E.g. all values of x and y that make a = “x+2 ≥ y” true
Entailment

- If a sentence β logically follows from a sentence α, we say that α entails β

 Notation: $\alpha \vdash \beta$

- Formal definition:

 α entails β if and only if β is true in all models in which α is true

 $\alpha \vdash \beta \equiv M(\alpha) \subseteq M(\beta)$

- Example:

 $x + y = 4$ entails $y = 4 - x$

Entailment in Wumpus World

- Situation: agent detects nothing in [1,1], moves right, detects a breeze in [2,1]

 Knowledge base: rules + [1,1] empty; [2,1] breeze

- Consider all possible models of KB

 - No stench, so no wumpus nearby

 - For simplicity, consider pits only

 - Three squares we can infer something about; 8 possible models

Wumpus World Models

Models of Knowledge Base

- Knowledge base = rules + observations
- $M(KB)$ = set of models in which the knowledge base is true
Entailment

- $\alpha_1 = \text{“[1,2] is safe”}
- $M(KB) \subseteq M(\alpha_1)$, therefore $KB \models \alpha_1$

Non-entailment

- $\alpha_2 = \text{“[2,2] is safe”}
- $M(KB) \not\subseteq M(\alpha_2)$, therefore $KB \not\models \alpha_2$

Inference

- Entailment just says that a sentence β is consistent with a sentence α
 - It says nothing about how to derive β from α
- **Inference** is the process of deducing a true sentence β from a given sentence α
 - Notation: $\alpha \vdash \beta$
 - “β is derived from α by inference procedure i”
 - Usually omit the i for simplicity

Properties of Inference Procedures

- **Soundness**: an inference procedure is *sound* if every sentence it can derive is entailed
 - If $\alpha \vdash \beta$ implies $\alpha \models \beta$, then i is sound
- **Completeness**: an inference procedure is *complete* if every entailed sentence can be derived
 - If $\alpha \models \beta$ implies $\alpha \vdash \beta$, then i is complete
• The knowledge base is syntactic
• Sensors create the connection between it and the real world—the semantics