Adversarial Search

CISC481/681, Lecture #7
Ben Carterette

Games

• Traditional context of “adversarial search”
• Two agents, each trying to win a game
 — One is our agent, the other is the adversary
• Simplest types of games:
 — Deterministic, turn-based, two-player, zero-sum, perfect information
 — (“Simple” in terms of what’s possible. The theory for these types of games is not simple.)
• Zero-sum games
 — One agent’s gain is another’s loss

Zero-Sum Games

• Chess (deterministic, perfect information)
 — Pretty good algorithms, some good enough to beat grandmasters
• Checkers (deterministic, perfect information)
 — Very good algorithms
• Go (deterministic, perfect information)
 — Not so good algorithms; rated low advanced amateur at best
• Backgammon (nondeterministic, perfect information)
 — Very good algorithms have discovered new strategies
• Poker (nondeterministic, imperfect information)

Non-Zero-Sum Games

• Prisoner’s dilemma
• Two suspects are in police custody. They’re held separately so they can’t communicate. Police lack evidence to convict, so they offer a deal:
 — If one testifies against the other, the testifier goes free and the other gets the full sentence
 — If both testify, both get a reduced sentence
 — If neither talks, both get a short sentence
• Self-interested rational agent will testify, but that is not optimal
Games as Search

- **States:** game piece configurations
 - E.g. chess pieces, cards
 - Terminal states: states that end the game
- **Successor function:** legal moves and the states they result in
- “Payoff” function: the gain associated with a particular terminal state
- **Key differences:**
 - Uncertainty due to the adversary
 - Very high branching factors in many cases

Strategies

- A **strategy** is a function that chooses among legal moves
 - Which is the same as saying it’s a way to choose which node to expand next
 - Which is exactly how we defined search strategies
- The **optimal strategy** is that which leads to the best possible outcome against a perfect adversary

A Very Simple Game

![Game Tree](image)
Addition Game

• MAX chooses a number from 1 to 3
• MIN chooses a number from 1 to 3
• They continue in this way until N (the sum of all numbers) is greater than 10
• Player that went over 10 pays $(N-10)$

Minimax

• The minimax value of a node in the game tree is:
 – If it is a terminal state, its payoff
 – If it is MAX's node, the maximum minimax value of all of its successors
 – If it is MIN's node, the minimum minimax value of all of its successors

• Minimax strategy:
 – MAX should always make the move with the greatest minimax value
 – MIN should always make the move with the least minimax value

Minimax Example

Minimax Strategy

• Intuition:
 – MIN is always acting to minimize MAX's gain
 – Since the game is zero-sum, minimizing MAX's gain is equivalent to maximizing MIN's gain
 – Two players acting this way are playing optimally
Minimax Algorithm

- Minimax values are recursive
 - Minimax value at parent = max of minimax values at depth 1 nodes = max of mins of minimax values at depth 2 nodes = max of mins of maxes of minimax values at depth 3 nodes = ...
- Requires a complete depth-first exploration of game tree

Minimax Performance

- Complete? Yes
- Optimal? Yes—minimax is the best strategy for two-player turn-based zero-sum perfect information games
 - (assuming the adversary is using minimax as well)
 - Von Neumann considered this the most important theorem in game theory
- Complexity?
 - Time = \(O(b^m) \); Space = \(O(bm) \)
 - Infeasible for any game of moderate size

α-β Pruning

- Idea: improve efficiency of minimax by pruning the game tree
 - Pruning: ignoring certain subtrees during tree traversal
- After visiting all leaf nodes of one parent, minimax values at nodes in the path can be bounded
 - Use the bounds to determine whether to prune a subtree

α-β Pruning

- Complete? Yes
- Optimal? Yes
 - α-β pruning will always give the same result as the minimax strategy
- Complexity?
 - Time = \(O(b^{d/2}) \) in the worst case, but if successor nodes can be ordered perfectly, \(O(b^{d/2}) \)
 - Reduces branching factor from \(b \) to \(vb \)
 - But usually not achievable: if we could order successor nodes perfectly, we would already have an optimal strategy
 - Like A* search with heuristics, its value is that it works well enough in many general cases
Imperfect Decisions

- For most “real” games, α-β pruning is still infeasible
 - Chess has a branching factor of 35 on average
 - α-β pruning can get that down to 6 at best
 - Average number of moves (depth) is ~57
 - $6^{57} = 2.3e44$ nodes expanded
- Apply heuristics
 - Define evaluation function to estimate the expected utility of a game position

Evaluation Function

- Is a configuration likely to lead to a win?
- Define evaluation function $f(n)$
- If the game is zero-sum, $f(n)$ can have the following properties:
 - $f(n) > 0$: likely to lead to a win
 - $f(n) < 0$: likely to lead to a loss
 - $f(n) = 0$: neutral
 - $f(n) = +\infty$: win
 - $f(n) = -\infty$: loss
- Similar to a heuristic function—the trick is defining a good one

Example Evaluation Functions

- Tic-tac-toe:
 - $f(n) = \#$ of 3-lengths open for agent — # of 3-lengths open for opponent
 - “3-length” = row, column, or diagonal that could still lead to a win
- Chess:
 - Alan Turing’s evaluation function: $f(n) = w(n)/b(n)$, where $w(n) = \sum$ of point values of White’s pieces and $b(n) = \sum$ of point values of Black’s

General Evaluation Functions

- A useful general evaluation function is a linear combination of “features” of the position
 $$f(n) = w_1 f_1(n) + w_2 f_2(n) + \ldots = \sum_{i=1}^{k} w_k f_k(n)$$
- For example:
 - Chess:
 - features might be the number of pieces of each type: $f_1=$# pawns, $f_2=$# bishops, ...
 - Weights might be the point values of the pieces: $w_1=1$, $w_2=3$, ...
 - Deep Blue used a linear function with over 8000 features
General Evaluation Functions

• Where do the features and weights come from?
 – Human expertise
 – Inductive learning
 – Reinforcement learning
• Much more later in the semester…

Depth-Limited α-β Pruning

• Idea is the same as depth-limited depth-first search:
 – If we haven’t reached a leaf node by some predetermined depth, calculate the evaluation function on the deepest nodes
 – In other words, treat the evaluation function as an approximation of the payoff value
 – Then propagate those values up the tree as usual
• Iterative deepening works even better when there’s a time limit

Games of Chance

• Some element of randomness or imperfect information introduced
 – Coin flips, dice, hidden game elements, etc
• Non-deterministic, turn-based, two-player, zero-sum, imperfect information

Simple Example: Chance Event

• MAX chooses number 1 or 2
• MIN chooses number 3 or 4
 – (knowing what MAX picked—perfect information)
• Chance event: weighted 3-sided dice roll
 – Roll 1 with probability 0.4, 2 with 0.2, 3 with 0.4
• Add MAX’s and MIN’s numbers to dice roll
 – If odd, MAX pays MIN the sum
 – If even, MIN pays MAX
Expected Minimax Value

- The **expected minimax value** is:
 - If a leaf node, the payoff value
 - If MAX's node, the max of the expected minimax values of its successors
 - If MIN's node, the min of the expected minimax values of its successors
 - If a chance node, the sum of the expected minimax values of its successors times their probability
 \[\sum_{s \in \text{Successors}} P(s) \cdot E\text{Minimax}(s) \]

Simple Example: Chance and Imperfect Information

- Same game as before, except MIN does not know what MAX picked
- MIN might assume MAX is equally likely to pick 1 or 2 and calculate expected minimax accordingly
 - This will lead him to pick 4 every time
 - After a few rounds, MAX will catch on and start picking 1 every time
 - Then MIN will catch on and start picking 3, then MAX will start picking 2, and on and on
 - Is there a stable strategy?

Mixed Strategies

- A player makes random decisions about which strategy to apply
 - E.g. 60% of the time pick 1, 40% pick 2
- Mixed strategies are often required for games with imperfect information or chance elements
- Optimal mixed strategy for number game:
 - MAX picks 1 with \(p=0.536 \), 2 with \(p=0.464 \)
 - MIN picks 3 with \(p=0.536 \), 4 with \(p=0.464 \)

Adversarial Search

- It's not only about board games and card games
- **Online** problems: input is arriving in serial; decisions must be made for each input value
 - **Online algorithms** are methods for solving them
 - Many online problems can be formulated as a mathematical "game"
- Markets: agents exchange goods and services
 - Agents sometimes compete, sometimes cooperate
 - Market rules and regulations define game environment, which in turn dictate strategies
- Other adversarial problems: we have some product people like; others abuse it
 - E.g. email and web spammers
 - Strategies for coping with abuse
Example: Online Paging

- A classic online problem
- A computer has a fast cache of size k, and slow memory of size m ($m > k$)
- Operating system receives page requests in serial
- For a request for page i:
 - If i is in the cache, there is no cost
 - If i is not in the cache (page fault), a cached page j must be swapped out for page i

Competitive Analysis

- Regular algorithms are analyzed by time and space complexity in the worst case
- Online algorithms are analyzed by how well they perform in the worst case relative to an optimal strategy based on perfect information about what’s coming
 - $ALG =$ worst case running time of algorithm
 - $OPT =$ running time of optimal strategy
 - Competitive ratio = ALG/OPT
- Worst case analysis is based on an adversary that can send the worst possible inputs for ALG

The Online Paging Game

- Formulate the online paging problem as a two-player game:
 - Player 1 = computer
 - Player 2 = adversary
 - Adversary requests a page i
 - Since it models the worst case, assume the adversary will always pick a page not in the cache
 - Computer picks a page to swap out of the cache to replace with page i
- What is the optimal strategy for this game?
 - That strategy is the optimal online algorithm for the problem

Optimal Algorithm for Online Paging

- LRU: Least Recently Used
 - Swap out the page that was accessed least recently
- This can be shown to be no worse than any other pure deterministic strategy
 - A mixed strategy (randomized algorithm) could be better, though
Complexity Theory

- CSPs characterize NP
- Games in some sense characterize PSPACE
 - NP (nondeterministic polynomial time): is there some assignment of values that will satisfy constraints?
 - PSPACE (polynomial space): is there some move I can make, such that for every move an adversary makes, there is some move I can make to win?
- Many puzzles (n-queens, n-puzzle, n-sudoku) are in NP
- Many games ([m,n,k]-tic-tac-toe, Connect Four, Reversi) are in PSPACE

Sponsored Search Auctions

- Overture model, 2002/2003: keyword market
 - Advertisers bid on keywords
 - Bids determine ranks of sponsored search results
 - When users click on keyword-related ads, advertiser pays Overture amount of bid
- Advertisers are competing with each other for good spots in the search results
- Auction rules will create a game environment
 - Strategies within that game affect Overture revenue

Sponsored Search Results

- Advertisers want to be in that top box
 - That's what users see first, and that's where they're most likely to click

Bidding Strategy

- Suppose two bidders, with a click worth $0.60 to one and $0.80 to the other
 - First bidder bids $0.60, second bids $0.61
 - First bidder then drops bid to $0.01, maintaining second position
 - Second bidder can then drop bid to $0.02 to maintain first position
 - But then first bidder can increase bid to $0.03 to move to first
 - Starting a cycle that repeats when the second bidder gets back to $0.61
- This is an unstable game—there is no equilibrium
- High loss of revenue to Overture
Sponsored Search Auctions

- Second-price auction used by Google and Yahoo
 - Each bidder pays the next-highest bid
- This solves the cycling problem:
 - First bidder bids $0.60, second bids $0.61
 - Second bidder pays $0.60
 - First bidder may choose to reduce bid, but there is no reason to keep changing it
- Still may be possible to develop strategies

Cooperative Image Labeling

- The ESP Game
 - Two players look at an picture
 - They cannot communicate with each other
 - They enter keywords that describe it
- Whenever one enters a keyword that the other entered, they score points
 - More points for more “informative” keywords

Cooperative Image Labeling

- Cooperation makes it work
 - Without that, players would have incentive to enter unrelated keywords
- Many, many players make it work well

Adversarial Web Search

- Google’s PageRank algorithm uses links between web pages to compute an “importance score” for each page
 - Pages that are linked to by a lot of pages will become more important
 - PageRank is recursive: pages that are linked to by important pages will become more important
- Spammers can increase PageRank of a web page by leaving huge numbers of links on blogs, message boards, etc
PageRank

- Page 2 will end up with the highest PageRank value, since it is linked to by two page (1 and 3)
- Page 3 will have second highest, because it got a link from Page 2
- Page 4 will have third highest, because it got a link from Page 3
- Page 1 will have the lowest because it is not linked to by anyone

TrustRank

- In this example, pages 5, 6, and 7 are spam
 - But they will have higher PageRank than page 1
- TrustRank algorithm uses some human judgments of spam to “seed” PageRank

TrustRank Game

- I choose a page to judge for whether it is spam or not