Informed Search

CISC481/681, Lecture #4
Ben Carterette

With material adapted from Prof. Marie desJardins (UMBC) and Kathy McCoy.

Quick Review

• Search problem formulation:
 – State space, initial state, successor function, path cost, goal test
• Search strategies defined by ordering of fringe
• Uninformed search strategies:
 – Breadth-first, uniform cost
 – Depth-first, depth-limited
 – Iterative deepening
• Tree-search and graph-search

Best-First Search

• Order fringe nodes \(n \) in increasing order of an evaluation function \(f(n) \)
 – Smaller \(f(n) \) suggests more promising node
• Best-first search describes a class of search strategies that work this way
 – Greedy best-first search
 – A* search
 – Uniform cost search?
• “Best” is limited by how good \(f(n) \) is. Optimality is not guaranteed!

Heuristic Functions

• A class of evaluation functions that use information about the problem domain
 – Not information about future possible states!
• \(h(n) = \) the estimated cost of the minimum-cost path from \(n \) to a goal state
 – \(h \) for heuristic
 – Estimate based on information computable from the current state description
Greedy Best-First Search

- Best-first search with \(f(n) = h(n) \)
 - i.e. order nodes on the fringe in increasing order of estimated distance from goal
 - Traveling Romania example: \(f(n) = \text{straight-line distance to Bucharest} \)
- Greedy best-first search expands the node that appears to be closest to the goal

Example: Traveling Romania

GBFS Performance

- Complete?
 - No: could get stuck in a loop and not find a solution
- Optimal?
 - No: the solution it finds is not necessarily best
 - E.g. Romania example
- Time and space complexity?
 - \(O(b^m) \) in the worst case
 - But a good heuristic function can ensure that the average case is much better

A* Search

- Idea: avoid expanding nodes that are already expensive
- Define evaluation function \(f(n) = g(n)+h(n) \)
 - \(g(n) = \text{cost from initial state to } n \)
 - \(h(n) = \text{estimated cost from } n \text{ to goal} \)
 - \(f(n) = \text{estimated total cost from start to finish while passing through } n \)
- Sort fringe nodes in increasing order of \(f(n) \)
Example: Traveling Romania

\[f(n) = g(n) + h(n) \]
\[g(n) \] is total cost from Arad to node \(n \)
\[h(n) \] is straight-line distance from city node to Bucharest

A* Performance

- Complete?
 - Yes, if arc cost \(\geq \varepsilon > 0 \)
 - (Unless there are infinitely many nodes with \(f(n) \leq f(G) \))
- Optimal?
- Time and space complexity?

Admissible Heuristics

- Let \(h^*(n) \) be the true cost to reach the goal state from \(n \)
- Call a heuristic \(h(n) \) **admissible** if \(h(n) \leq h^*(n) \) for all \(n \)
- Admissible heuristics always **underestimate** the cost to reach the goal
 - They are **optimistic**
 - Romania example: straight-line distance is never more than actual road distance
Admissibility and Optimality

- Theorem: if \(h(n) \) is admissible, Tree-Search with A* is optimal

Why Tree Search?

- Tree search does not discard nodes that have already been expanded—so why use it?
- Let’s do graph search with an admissible heuristic

Consistent Heuristics

- Call a heuristic \(h(n) \) consistent if, for every node \(n \) and every successor node \(n' \) of \(n \) generated by action \(a \), \(h(n) \leq c(n,a,n')+h(n') \)
 - Note: every consistent heuristic is admissible
 - Not every admissible heuristic is consistent

Intuition: \(h \) gets more accurate as the search deepens

Consistency and Optimality

- Theorem: If \(h(n) \) is consistent, Graph-Search with A* is optimal
A* Performance

• Complete?
 – Yes, if arc cost \(\geq \epsilon > 0 \)
 – (Unless there are infinitely many nodes with \(f(n) \leq f(G) \))
• Optimal?
 – Yes!
• Time and space complexity?
 – Exponential
 – But this does not really tell us much about practicality

Choosing Heuristics

• A problem may have many possible consistent and/or admissible heuristic functions

 \[
 \begin{array}{ccc}
 7 & 2 & 4 \\
 5 & 5 & \text{Start Node} \\
 8 & 3 & 1 \\
 6 & 7 & 8 \\
 \end{array}
 \]

 \[
 \begin{array}{ccc}
 1 & 2 \\
 3 & 4 & 5 \\
 \text{Goal Node} \\
 \end{array}
 \]

• \(h_1(n) \) = number of misplaced tiles
• \(h_2(n) \) = total Manhattan distance of misplaced tiles to correct location
Dominance

- If \(h_1(n) \) and \(h_2(n) \) are both admissible heuristics, and \(h_2(n) \geq h_1(n) \) for all \(n \), then we say \(h_2 \) **dominates** \(h_1 \)
 - \(h_2 \) is “smarter” than \(h_1 \)
 - \(h_2 \) is “more informed” than \(h_1 \)
- **Theorem**: if \(h_2(n) \) dominates \(h_1(n) \), then the set of nodes expanded by \(A^* \) with \(h_2 \) is contained in the set of nodes expanded by \(A^* \) with \(h_1 \)

Effective Branching Factor

- To say \(A^* \) is exponential does not capture performance differences between heuristics
- If \(A^* \) with heuristic \(h(n) \) generates \(N \) nodes to find a solution at depth \(d \), the **effective branching factor** \(b^* \) is the branching factor that a tree of depth \(d \) would need in order to contain \(N+1 \) nodes
 - i.e. \(N+1 = 1 + b^* + (b^*)^2 + ... + (b^*)^d \)
 - (solve for \(b^* \))
- \(b^* \) is a good estimate of a heuristic’s performance

Uniform-Cost Search Revisited

- Uniform-cost search orders nodes on the fringe in increasing order of path cost
- Equivalent to \(A^* \) search with \(h(n) = 0 \)
 - \(f(n) = g(n) + h(n) = g(n) = \text{path cost} \)
- Therefore every heuristic with \(h(n) > 0 \) for some \(n \) is better than uniform-cost search

Empirical A* Performance

<table>
<thead>
<tr>
<th>(d)</th>
<th>IDS</th>
<th>A*/h_1</th>
<th>A*/h_2</th>
<th>IDS</th>
<th>A*/h_1</th>
<th>A*/h_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6,384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>47,127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>3,644,035</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>3,644,035</td>
<td>539</td>
<td>113</td>
<td>2.78</td>
<td>1.44</td>
<td>1.23</td>
</tr>
</tbody>
</table>
Devising Better Heuristics

- The Manhattan distance heuristic for the 8-puzzle still ignores a lot of information
 - Like the fact that tiles will obstruct each other
- Think of the heuristic as breaking a problem down into “relaxed” subproblems
- More complex subproblems can result in better heuristics

8-Puzzle Heuristics

- \(h_1 \): number of out-of-place tiles
 - Subproblem: pull each tile out and put it in the right place
- \(h_2 \): Manhattan distance to correct location
 - Subproblem: move each tile one square at a time to the right place
- \(h_3 \): Number of moves required to get disjoint pairs of tiles to the right places
 - E.g. \(h_3(n) = d_{12} + d_{34} + d_{56} + d_{78} \)
- \(h_4 \): Number of moves required to get disjoint sets of 4 tiles to the right places
 - E.g. \(h_4(n) = d_{1234} + d_{5678} \)

8-Puzzle Heuristic \(h_4(n) \)

A* Summary

- Fringe nodes are sorted in increasing order of \(f(n) = g(n) + h(n) \)
 - \(g(n) \) = path cost from start node to \(n \)
 - \(h(n) \) = heuristic function value of node \(n \): estimated distance from \(n \) to goal state
- A* is complete
- A* is optimal if the heuristic function is consistent
- A* requires exponential time and space
 - But in practice, good heuristics provide much better time/space usage than other exponential search algos
More A* Examples

- Courtesy of Prof. Kathy McCoy:
 - 8-puzzle with \(h(n) = \) number of misplaced tiles
 - Robot navigation with \(h(n) = \) Manhattan distance from goal
Robot Navigation

\[f(N) = h(N), \text{ with } h(N) = \text{Manhattan distance to the goal} \]

(not A*)

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Iterative Deepening A*

- A* can still have very large memory requirements for high-depth problems
- Idea: use iterative deepening, except with increasing thresholds on \(f(n) \) instead of depth
- Initialize threshold \(c = f(\text{start state}) \)
- Loop until a solution is found:
 - Depth-first search limited to nodes with \(f(n) \leq c \)
 - \(c := \min f(n), n \text{ on fringe} \)

8-Puzzle

\[f(N) = g(N) + h(N) \]

with \(h(N) = \text{number of misplaced tiles} \)

Cutoff=4
8-Puzzle

\[f(N) = g(N) + h(N) \]

with \(h(N) \) = number of misplaced tiles

Cutoff=4
8-Puzzle

\[f(N) = g(N) + h(N) \]
with \(h(N) \) = number of misplaced tiles
8-Puzzle

\[f(N) = g(N) + h(N) \]
with \(h(N) \) = number of misplaced tiles

Cutoff=5

Simplified Memory-Bounded A*

- Perform A* as usual until memory is full
- Then drop the node \(n \) on the fringe with the largest \(f(n) \), and back up its value to its parent
 - After all children have been dropped, replace parent value with smallest child \(f(n) \)
 - The root of an erased subtree “remembers” the cost of the best path in that subtree
 - Subtree will be regenerated only if all other nodes in the fringe have greater \(f \) values
- Probably about the best general-purpose search algorithm available